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1 Statement of the Problem Studied

Under this grant we have studied the development of a scientifically sound
basis for software development that builds on widely used pragmatic meth-
ods but is firmly grounded in well-established formal domains such as first-
order logic and automata theory. To be sufficiently expressive for software
systems, the work has focused on methods applicable to infinite-state sys-
tems. Traditionally methods for infinite-state systems have been expensive,
because they were mainly deductive and thus required guidance by users
who were both experts in the application domain and in the verification
methodology.

Our research has been directed at algorithmic-deductive techniques that
separate the combinatorial reasoning from reasoning about the data. These
methods often limit user input to providing abstract system models and
application-level guidance, making the interaction more natural to software
developers. Constructed proofs hide low-level details; instead, they reason
at the most appropriate level of abstraction with respect to the properties to
be proved. This characteristic of proofs make them suitable as system doc-
umentation that can evolve with the system. To ensure well-defined seman-
tics, computational models were developed for new computing paradigms,
including aspects of publish-subscribe systems and middleware design pat-
terns.




2 Summary of Results

2.1 Static Analysis

We have made significant contributions to the automatic construction of
proofs of sequential and reactive systems by developing a new approach to
invariant generation and program termination analysis.

2.1.1 Invariant Generation

Generating system invariants is one of the most important components of
any verification methodology. In addition, invariants provide insight into
the system. Invariant generation has been studied extensively for several
decades. The traditional approaches have relied on forward propagation in
an abstract interpretation framework. Starting from the initial condition,
symbolic simulation is performed in an abstract domain until a fixed point
is reached. The fixed point is the most precise invariant of the system rep-
resentable in the abstract domain chosen. For the most popular abstract
domains, however, convergence may not be reached in a finite number of
steps, and one has to resort to widening to force convergence, thereby mak-
ing the invariant less precise and potentially trivial. Despite much study,
widening has remained an art more than a science, with little control of the
user over the resulting precision, and often unpredictable results in practice.

The approach that we have developed addresses these problems by posing
the invariant-generating problem as a constraint-solving problem [CSS03].
The conditions for an expression of a certain type to be an invariant are
encoded as a constraint system and the solutions of this constraint system
represent all invariants of that type. This constraint-based approach has
several advantages over the traditional approach, especially for software en-
gineering practice.

Controlling Complexity Invariant generation is inherently a hard prob-
lem with high complexity. With our method, however, the user can
make deliberate choices how to trade off precision versus complexity
by choosing the shape of the target invariant and strengthening the
conditions on the properties to be found. In the traditional approach
user control essentially ends with the choice of the abstract domain.
Also, our approach allows exploitation of additional structure in the
system to reduce the complexity of the constraint solving. For exam-
ple in [SSMO03] we showed that systems presented as Petri nets gave
rise to linear constraint systems rather than nonlinear ones.




New Abstract Domains In the traditional approach invariant generation
was studied mostly in the abstract domain of linear inequalities. At-
tempts to extend it to other domains were largely unsuccessful. With
our constraint-based approach, however, target template invariants
can be chosen in any domain that allows the encoding of the conditions
in a (decidable) constraint system. For example, we have succeeded in
generating nonlinear invariants (polynomial equalities) [SSM04] and
are currently investigating application to recursive datatypes. In soft-
ware engineering practice this approach creates the opportunity to
develop invariant generating methods specialized for the application
and its specific data structures. :

New Target Properties Traditional invariant generation methods are by
their very nature, forward symbolic simulation, limited to generating
invariants. In the constraint-based approach, any property that can
be encoded as a constraint system can be generated. For example, we
have applied exactly the same techniques to the generation of ranking
functions, described below. In software engineering practice, this can
easily be extended to application-specific properties. We are currently
developing methods to generate verification diagrams automatically.

Constraint Solvers as Engines The main bottleneck in the constraint-
based approach is the complexity of solving the constraints. Constraint-
solving, however, is an independent and very active area of research
with many other applications. The advantage of the constraint-based
approach is that any advances in constraint solving can directly be ex-
ploited by our methods. Stronger constraint solvers translate directly
into improved precision and increased scalability.

2.1.2 Termination Analysis

Guaranteed termination of program loops is necessary in many settings,
such as embedded systems and safety critical software. Although termina-
tion analysis methods have been studied extensively in logic and functional
programming and term rewriting systems, termination of imperative pro-
grams had, until recently, received little attention.

Over the last four years we have developed a systematic, constraint-based
approach towards termination analysis of imperative programs [CS01, CS02,
BMSO05]. In general, termination of loops is proved by exhibiting a rank-
ing function, that is, a function that is well-founded and decreasing with
each pass through the loop. We have developed methods for automatically




synthesizing such ranking functions. Like for invariant generation, the condi-
tions for expressions of a certain type to be a ranking function are encoded
as a constraint system. If the resulting constraint system is satisfiable, a
ranking function exists, and hence the loop has been proved to terminate.
Unlike for invariant generation, the constraint systems generated for ranking
functions are linear, and hence can be solved very efficiently. Therefore this
method scales remarkably well. We have demonstrated our methods on tens
of thousands of lines of code, with analysis times on the order of seconds.

2.1.3 Static Analysis Tools

The lack of integration between prototype implementations of results of re-
search blocks progress toward direct application of formal methods research
in software engineering settings. We have surveyed a host of tools, exam-
ining how their integration would increase their power and benefit future
research and application [BSSM04].

2.2 Dynamic Analysis

Although static analysis methods have improved considerably, in many cases
they still do not scale to large software projects. A practical alternative
is then to do dynamic analysis, that is, to monitor the running program.
Another situation in which dynamic analysis may be the only option is when
the program must run in an environment that does not tolerate violations
of the specification, but the source code is not available for inspection for
proprietary reasons or due to outsourcing.

Dynamic analysis tends to have lower complexity than static analysis,
because runs of the system are analyzed individually, while with static anal-
ysis all (usually infinitely many) possible runs must be covered. We have
developed efficient methods for runtime verification based on alternating au-
tomata [FS04, FSS02]. These methods are not limited to checking temporal
properties, but can also collect runtime statistics. These statistics are useful
as early warnings of impending problems in performance and resource usage.

Dynamic analysis methods can also be used as an alternative to test-
ing. In collaboration with Synopsys we have developed a specification lan-
guage and algorithms for the online and offline monitoring of synchronous
systems including circuits and embedded systems [DSS*05]. The specifica-
tion language can describe both correctness/failure assertions and statistical
measures that are useful for system profiling and coverage analysis.




2.3 Computational Models

New computational paradigms require well-defined computational models as
a basis for reasoning about systems developed according to these patterns
and principles. Often, new paradigms emerge and are adopted because they
are found to solve recurring problems conveniently. Modeling and anal-
ysis come afterward. We have modeled and analyzed the following new

paradigms:

Aspect-oriented programming Aspect-oriented programming [KLM197]
allows component-based development with orthogonal concerns such
as security or concurrency control developed and incorporated sepa-
rately. We developed a computational model for aspect-oriented con-
struction of reactive systems, which allows analysis of preservation
of temporal properties [Sip03] based on early work in this area by
Katz [Kat93].

Publish-subscribe Systems The publish-subscribe paradigm has emerged
as a convenient architectural principle to construct large loosely-coupled
distributed systems. Components publish messages to the middleware,
which distributes them to components that have expressed interest by
means of subscriptions. Subscriptions can be in the form of simple
filters or as more complex temporal patterns, also known as event cor-
relation expressions. In safety critical systems, but also in many other
systems such as stock-trading systems, it is essential that all relevant
messages are delivered to their target audiences. Practical experience
with a popular, open-source middleware platform showed that it is
extremely hard to get the semantics of an event-correlation service
correct without a very careful analysis.

We developed an event-correlation language and defined its operational
semantics in terms of concurrent automata [SSS+03]. This semantics
not only allows analysis of event correlation expressions [SSSM05], but
also enables automatic synthesis of the the correlators to be embedded
in the middleware, thus obtaining correct-by-construction implemen-
tations.

Design Patterns Design patterns [GHJV95] provide schematic, informal
solutions to frequently occurring problems in software development.
Formalizing such patterns is an important first step in enabling for-
mal analysis of various aspects of systems developed according to these




patterns. Together with middleware experts from Washington Univer-
sity in St Louis, we formalized one such design pattern for middleware
systems, known as WaitonConnection [SSRB00]. We modeled remote
invocations handled in accordance with this pattern and analyzed re-
source requirements and potential for deadlock for different thread
allocation protocols [SSS*05]. This formalization can serve as an ex-
ample for modeling other design patterns.

2.4 Decision Procedures

Efficient decision procedures are the cornerstone of every verification sys-
tem. Decision procedures for individual theories, however, are of limited use
in verification and especially in software verification, because most verifica-
tion conditions involve data types that span multiple theories, for example
recursive data types combined with integers.

We have developed combination methods for various data types with in-
tegers, including recursive data types and queues [ZSM04a, ZSM04b, ZSM05].

2.5 Case Studies: CARA

Automation of medical devices can save lives. It can assure continuous mon-
itoring and control and consistent care when trained medical personnel is
not available or in short supply. On the other hand, errors in the software or
missed conditions can be fatal. The Food and Drug Administration (FDA)
has the task to determine whether a medical device is safe for deployment.
Currently this is done by extensive review of the development and testing
process; no formal verification is mandated to obtain approval.

As software gets more and more complex there is a feeling that the
current review process may not be adequate, and more formal techniques are
called for. The CARA case study was initiated by the FDA, in collaboration
with the Army Research Office, to assess the feasibility of doing formal
verification for such a device

The CARA case study concerns a computer-assisted resuscitation pump
used to provide fluids to people who suffer severe loss of blood, to stabilize
their blood pressure until more permanent remedial actions such as surgery
can be provided. The device was developed by the Walter Reid Army Insti-
tute of Research (WRAIR) in Silver Spring, MD.

We were provided with a set of tagged requirements, developed by med-
ical experts at WRAIR. The same document was also given to the software
engineers charged with developing the software. We participated in several




meetings and rounds of questions and answers with the medical expert and
software engineers at WRAIR.

We modeled the system using clocked transition systems [MP95, KMP96,
KMP98], an extension of fair transition systems to account for continuous
real time. In the course of modeling this system we added several constructs
to make the description more natural. Clocked transition systems are a very
expressive model, and thus most questions about them are undecidable.
However, the model under construction did not use the full expressiveness,
and thus we were able to specialize our analysis techniques for this case,
up to the point where model checking could be used for some of it. The
analysis techniques were implemented in our verification tool STeP (Stanford
Temporal Prover) [BBC*00].

2.6 Tool Development: STeP + AutoFocus

We have collaborated with researchers from the group of Prof. Manfred
Broy of the Technical University of Munich on the integration of STeP with
AutoFocus. Dr. Heiko Lotzbeyer and Alexander Wisspeintner from the
Technical University of Munich visited SRI and Stanford for several weeks.
We explored the integration of design and verification models between Auto-
Focus [HSSS96] and STeP [BBC*00]. We translated an existing AutoFocus
model into STeP, while carefully considering both the structural and the
behavioral aspects of the model. Extra variables had to be introduced to
preserve the structural view, consisting of a network of components con-
nected by communication channels, and its execution semantics. The be-
havioral view could directly be modeled by STeP transition systems, with
the addition of a global clock to maintain the discrete time semantics of
AutoFocus.
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